

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.com
 Turning 1000 1001 1001

• Toll Free : 1800 102 1044

Department of Artificial Intelligence and Data Science II Year IV Semester 4AID2-01: Discrete Mathematics Structure

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q1. Prove, for finite sets A and B:	BLT-3	CO-1
n(A B) = n(A) + n(B) - n(A B)		
Q2. In a class of 80 students, 60 play football and 40 play basket ball.		CO-1
Find how many plays both games and how many play football only play.		
Q3. State and prove the pigeonhole and generalized pigeonhole principle.		CO-1
Q4. Out of 250 failed students, 128 fails in maths, 87 in physics, and 134	BLT-4	CO-1
in English, 31 failed in math and physics, 54 failed in English and maths,		
30 failed in English and physics. Find:-		
(i) All three subjects.		
(ii) In English or in maths, but not in physics.		
Q5. Define polynomial, exponential and logarithmic function with	BLT-1	CO-1
example.		

ASSIGNMENT-II

Q1. Show that $(p \land q) \land (r \land s) \rightarrow p$ for any proposition is a tautology	BLT-3	CO-2
Q2. Define finite state machine.	BLT-1	CO-2
Q3. Obtain PCNF of the statement S given be($\sim p \rightarrow r$) $\Lambda(q \leftrightarrow p)$.	BLT-4	CO-2
Q4. Explain about predicate and quantifier.	BLT-1	CO-2
Q5. Show that $\sim (p \leftrightarrow q) \equiv \sim p \leftrightarrow q \equiv p \leftrightarrow \sim q$	BLT-2	CO-2

ASSIGNMENT-III

Q1. Determine the number of ways to place 2k+1 indistingushable balls in three distinct boxes so that any two boxes together will contain more than other one.	BLT-1	CO-3
Q2. Prove that $C(2n,2) = 2C(n,2) + n^2$	BLT-2	CO-3
Q3. Find the number of way in which an arrangement of 4 letter can be made from the letters of the word PROPORTION.	BLT-4	CO-3
Q4. Solve the recurrence relation	BLT-3	CO-3
$a_n + 5a_n - 1 + 6a_n - 2 = 3n^2 - 2n + 1$		
Q5. Solve the recurrence relation	BLT-3	CO-3
$3a_{n+1} = [2a]_{n+2} - n + a_{n-1}, n \ge 1 \text{ with } a_0 = 7, a_1 = 3$		

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Artificial Intelligence and Data Science

II Year IV Semester

4AID2-01: Discrete Mathematics Structure

ASSIGNMENT-IV

Q1. Show that If f is a homomorphism of a group G into a group G' with kernel K is a normal subgroup of G.	BLT-1	CO-4
Q2. Let H be a subgroup of index 2 in a group G. Show that H is a normal subgroup of G.	BLT-3	CO-4
Q3. Let G be the set of all non-zero real numbers and let $a*b = ab/2$. Then show that $(G,*)$ is an abelian group	BLT-3	CO-4
Q4. Define the binary operations \bigoplus and Θ on Z by $x \bigoplus y = x + y - 7$ and $x \Theta y = x + y - 3xy$, $\forall x, y \in Z$. Is (Z, \bigoplus, Θ) is a ring? if not then why?	BLT-1	CO-4
Q5. Every field is an integral domain but the converse is not true.	BLT-4	CO-4

ASSIGNMENT-V

_	t a simple graph with n vertices and k components can have (n-k+1))/2 edges	BLT-3	CO-5
Q2. Let G be connected planar graph with n_v vertices, n_e edges and n_f faces .then prove that $n_v - n_e + n_f$.		BLT-3	CO-5
Q3. Show that in a complete graph with n- vertices there are (n-1)/2 edge disjoint Hamiltonian circuits, if n is an odd number> 3.			CO-5
Q4. A planar graph has 30 vertices each of degree 3 . in how many regions can this graph be partitioned?		BLT-1	CO-5
Q5. Define	•	BLT-1	CO-5
(i)	Graph		
(ii)	Undirected graph and directed graph		
(iii)	Finite and infinite graph		
(iv)	Pendent vertex		
(v)	Bipartite graph		

*BLT: BLT shows the **Bloom's taxonomy** levels