

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Artificial Intelligence & Data Science III Year VI Semester

6AID5-11: Artificial Neural Network

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q1. When comparing neural networks and the human brain, focus on aspects	BLT-2	CO-1
such as neurons, synapses, learning mechanisms, and parallel processing.		
Q2. Compare and contrast neural networks with the human brain. Discuss the	BLT-4	CO-1
similarities and differences in their structure and function. How do these		
similarities inspire the design and application of artificial neural networks in		
solving complex problems?		
Q3. Use diagrams to illustrate different network architectures and discuss	BLT-2	CO-1
their specific use cases, such as image recognition for convolution neural		
networks (CNNs) and time-series prediction for recurrent neural networks		
(RNNs).		
Q4. Explain how neural networks can be viewed as directed graphs. Discuss	BLT-2	CO-1
the different types of network architectures and their respective applications.		

ASSIGNMENT-II

Q1. Use diagrams and flowcharts to explain the XOR problem and back propagation. Include pseudocode or actual code snippets for the back propagation algorithm. For the computer experiment, detail the dataset, network architecture, training process, and results.	BLT-4	CO-2
Q2. Include mathematical derivations and examples to clarify how the LMS	BLT-5	CO-2
algorithm functions. Use plots to show how weights converge over		
iterations		
Q3. Explain output representation and decision rules in the context of	BLT-2	CO-2
multilayer perceptrons. How do these concepts affect the network's ability		
to generalize?		
Q4. Discuss the relationship between a perceptron and the Bayes classifier	BLT-2	CO-2
in a Gaussian environment. How does the perceptron approximate the		
Bayes decision boundary under these conditions?		
Q5. Explain the concept of linear least square filters. How are they used in	BLT-2	CO-2
the context of single layer perceptrons?		

ASSIGNMENT-III

Q1. Provide a detailed mathematical derivation of the back propagation	BLT-4	CO-3
algorithm, highlighting the role of the chain rule in computing gradients.		
Illustrate your explanation with a simple neural network example.		
Q2. Identify and discuss the limitations of back propagation. What	BLT-4	CO-3
challenges are associated with its use?		
Q3. Summarize the key benefits of back propagation, such as efficiency	BLT-3	CO-3
and adaptability to different architectures. Highlight limitations like		
vanishing gradients and computational complexity.		
Q4. Discuss how it is used to analyze the curvature of the error surface.	BLT-1	CO-3

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Artificial Intelligence & Data Science

III Year VI Semester 6AID5-11: Artificial Neural Network

ASSIGNMENT-IV

Q1. Define Self-Organizing Maps (SOM) and explain their significance	BLT-1	CO-2
in artificial intelligence.		
Q2. Explain the two basic feature mapping models used in SOMs.	BLT-2	CO-2
Q3. Provide a step-by-step description of the SOM algorithm.	BLT-4	CO-3
Q4. Explain how the topological properties of the input space are	BLT-2	CO-3
preserved in the feature map.		

ASSIGNMENT-V

Q1. Compare Hopfield models with other types of recurrent neural	BLT-4	CO-3
networks.		
Q2. Design a computer experiment to simulate a Hopfield network.	BLT-5	CO-3
Q3. Describe the setup of the experiment, including the choice of	BLT-1	CO-2
parameters and initial conditions.		
Q4. Explain the structure and functioning of a Hopfield network.	BLT-2	CO-3

*BLT: BLT shows the **Bloom's taxonomy** levels.