

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Artificial Intelligence & Data Science III Year V Semester 5AID4-05: Analysis of Algorithm

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q.1. Solve the following recurrence relation using Master's theorem-	BLT-2	CO-1
a) $T(n) = 3T(n/2) + n2$		
b) $T(n) = 8T(n/4) - n2\log n$		
c) $T(n)=2T(n1/2) + \log n$		
Q.2. Show all the step of Strassen's matrix multiplication algorithm to	BLT-5	CO-1
multiply the following matrices.	DL1-3	CO-1
$X = \begin{pmatrix} 3 & 4 \\ 2 & 8 \end{pmatrix} \qquad Y = \begin{pmatrix} 4 & 5 \\ 9 & 6 \end{pmatrix}$		
Q.3 Using quick sort algorithm sort the following sequence	BLT-4	CO-1
A={3,19,9,5,12,8,7,4,21,2,6,11}		
Q.4 Explain asymptotic notations with suitable example.	BLT-2	CO-1
Q.5. Explain merge sort. Using merge sort algorithm sort the following	BLT-4	CO-1
sequence.		
A= {38, 42, 24, 68, 45, 88, 12, 32}		

ASSIGNMENT-II

Q.1. Find optimal parenthesization of matrix chain product whose sequence of	BLT-5	CO-2
dimension is (4,10,6,4,5).		
Q.2. Find out the solution generating by job sequencing. When n=7 with	BLT-5	CO-2
following Profit and Deadline.		
Profit(p1,p2p7)=(3,5,20,18,1,6,30) Deadline(d1,d2d7)=(1,3,4,3,2,1,2)		
Q.3. Explain 0/1 Knapsack problem with suitable example.	BLT-2	CO-2
Q.4. X= <a,a,b,a,b> Y=<b,a,b,b>.If Z is an LCS of X and Y ,then find Z using</b,a,b,b></a,a,b,a,b>	BLT-4	CO-2
dynamic programming.		
Q.5. Explain optimal merge pattern with suitable example.	BLT-2	CO-2

ASSIGNMENT-III

Q.1. Describe Naïve Pattern Matching Algorithm.	BLT-1	CO-3
Q.2. Explain Rabin Karp Method with suitable example.	BLT-2	CO-3
Q.3. Explain both the heuristics of Boyer – Moore Algorithm with suitable	BLT-2	CO-3
example.		
Q.4. Write short note on Quadratic assignment problem.	BLT-2	CO-3
Q.5. What is backtracking? Write an algorithm to solve N – Queens problem.	BLT-4	CO-3
Trace it for N=6 using back tracking approaches.		

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Artificial Intelligence & Data Science

III Year V Semester

5AID4-05: Analysis of Algorithm

ASSIGNMENT-IV

Q.1. What are the randomized algorithms? Differentiate Las- Vegas algorithm	BLT-1	CO-4
and Monte Carlo algorithm.		~~ .
Q.2. Describe multi - commodity flow network.	BLT-2	CO-4
Q.3. Explain the following term: Flow Network, Augmenting Paths, Residual	BLT-2	CO-4
Network and capacity in network.		
Q.4. a) Find maximum flow in below network	BLT-4	CO-4
b) Find the corresponding minimum cut and check that its capacity is same		
as that value of maximum		
flow found in (a part).		
16 10 12 3 Source: 0 Sink: 5 5 14 4 5 5		
Q.5. Briefly explains flow shop scheduling.	BLT-2	CO-4

ASSIGNMENT-V

Q.1. Explain the following terms:-	BLT-2	CO-5
i) P ii) NP		
Q 2. Explain NP Complete?	BLT-2	CO-5
Q.3 What is COOK's Theorem.	BLT-1	CO-5
Q.4 Explain vertex cover problem with suitable example.	BLT-2	CO-5

*BLT: BLT shows the **Bloom's taxonomy** levels.