

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Artificial Intelligence & Data Science III Year V Semester 5AID4-03: Operating Systems

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q1. What is Operating system? Explain the architecture of an operating system.	BLT-1	CO-1
Q2. List out the various process state & brifly explain with a suitable state diagram.	BLT-2	CO-1
Q3. Explain the following: (i) Process and Program. (ii) Threads (iii) System Call	BLT-2	CO-1
Q4 Explain the various services of an operating system.		CO-1
Q5. Differentiate between (i) User thread/Kernel thread (ii) Processes/Threads	BLT-4	CO-1

ASSIGNMENT-II

Q1. What	What is critical section problem? How are semaphores are used for				BLT-1	CO-2		
solving cri	solving critical section problem.							
Q2. What	What is scheduling? Difference between short term and long term					long term	BLT-4	CO-2
schedulers								
Q3.Describ	Q3.Describe basic criteria to select a better CPU scheduling algorithm					BLT-1	CO-2	
Q4. Consider the following set of process with the arrival time and CPU				BLT-5	CO-2			
burst time	in given in mi	iliose	econd					
PROC			IVAL TIME	CPU BURST TIME				
P1		0		22	2			
P2		3		15				
P3		8		18				
P4		10		25				
Determine	average wait	ting t	time and turnard	ound time	with p	reemptive		
and non preemptive SJF scheduling.					•			
Q5 Consider the following set of process with the arrival time and					BLT-5	CO-2		
CPU burst time in given in miliosecond:								
	Process	A	Arrival time	CPU	burst			
				time				
	P1	C	0	25				
	P2	5	5	15				
_	P3	8	8	12				
	P4	1	10	22				
Determine average waiting time and turnaround time with FCFS								
scheduling algorithm.								

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Artificial Intelligence & Data Science III Year V Semester 5AID4-03: Operating Systems

ASSIGNMENT-III					
Q1. Explain about deadlock .what are the necessary conditions for	BLT-2	CO-3			
deadlock to occur?					
Q2. Explain the fragmentation and difference between internal and	BLT-2	CO-3			
external fragmentation?					
Q3. Explain the following:		CO-3			
(i) Resource allocation graph.					
(ii) Deadlock characteristic.					
Q4. What are memory management and explain swapping.		CO-3			
Q5. Explain the following .		CO-3			
(i) Logical and physical address space					
(ii) Relocation and address translation					

ASSIGNMENT-IV

Q1. Explain the following		CO-4
(i) Virtual memory		
(ii) Segmentation		
Q2. Explain the various page replacement policies using atleast one		CO-4
example of one policy.		
Q3. Explain Concept of Thrashing and TLB(translation look aside buffer).		CO-4
Q4. Explain the following		CO-4
(i) Demand paging.		
(ii) Global versus local allocation.		
Q5. Consider least recent unit algorithm using a matrix when pages are		CO-4
referenced in the order		
0, 1, 2, 3, 2, 1, 0, 3, 2, 3.and calculate page fault.		

ASSIGNMENT-V

Q1. Explain various Disk Scheduling Algorithm in brief.	BLT-2	CO-5
Q2. Explain Concepts of file & Attribute of a file.	BLT-2	CO-5
Q3. Explain the directory structures and brifly explain about tree		CO-5
structured directory.		
Q4. Explain the following: Spooling		CO-5
i. File system mounting		
ii. Disk structure and disk operation		
Q5. Given the following queue 95, 180, 34, 119, 11, 123, 62, 64 with		CO-5
the Read-write head initially at the track 50 and the tail track being at		
199 to calculate by sstf and scan and look algorithm.		