

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-05: Analysis of Algorithm

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q.1. Solve the following recurrence relation using Master's theorem-	BLT-2	CO-1
a) $T(n) = 3T(n/2) + n2$		
b) $T(n) = 8T(n/4) - n2\log n$		
c) $T(n)=2T(n1/2) + \log n$		
Q.2. Show all the step of Strassen's matrix multiplication algorithm to	BLT-5	CO-1
multiply the following matrices.	DL1 3	
$X = \begin{pmatrix} 3 & 4 \\ 2 & 8 \end{pmatrix} \qquad Y = \begin{pmatrix} 4 & 5 \\ 9 & 6 \end{pmatrix}$		
Q.3 Using quick sort algorithm sort the following sequence A={3,19,9,5,12,8,7,4,21,2,6,11}	BLT-4	CO-1
Q.4 Explain asymptotic notations with suitable example.	BLT-2	CO-1
Q.5. Explain merge sort. Using merge sort algorithm sort the following	BLT-4	CO-1
sequence.		
A= {38, 42, 24, 68, 45, 88, 12, 32}		

ASSIGNMENT-II

Q.1. Find optimal parenthesization of matrix chain product whose sequence of	BLT-5	CO-2
dimension is (4,10,6,4,5).		
Q.2. Find out the solution generating by job sequencing. When n=7 with	BLT-5	CO-2
following Profit and Deadline.		
Profit(p1,p2p7)=(3,5,20,18,1,6,30) Deadline(d1,d2d7)=(1,3,4,3,2,1,2)		
Q.3. Explain 0/1 Knapsack problem with suitable example.	BLT-2	CO-2
Q.4. $X=\langle a,a,b,a,b \rangle$ $Y=\langle b,a,b,b \rangle$. If Z is an LCS of X and Y, then find Z using	BLT-4	CO-2
dynamic programming.		
Q.5. Explain optimal merge pattern with suitable example.	BLT-2	CO-2

Q.1. Describe Naïve Pattern Matching Algorithm.	BLT-1	CO-3
Q.2. Explain Rabin Karp Method with suitable example.	BLT-2	CO-3
Q.3. Explain both the heuristics of Boyer – Moore Algorithm with suitable	BLT-2	CO-3
example.		
Q.4. Write short note on Quadratic assignment problem.	BLT-2	CO-3
Q.5. What is backtracking? Write an algorithm to solve N – Queens problem.	BLT-4	CO-3
Trace it for N=6 using back tracking approaches.		

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-05: Analysis of Algorithm

ASSIGNMENT-IV

Q.1. What are the randomized algorithms? Differentiate Las- Vegas algorithm	BLT-1	CO-4
and Monte Carlo algorithm.		
Q.2. Describe multi - commodity flow network.	BLT-2	CO-4
Q.3. Explain the following term: Flow Network, Augmenting Paths, Residual	BLT-2	CO-4
Network and capacity in network.		
Q.4. a) Find maximum flow in below network	BLT-4	CO-4
b) Find the corresponding minimum cut and check that its capacity is same		
as that value of maximum		
flow found in (a part).		
16 10 12 3 Source: 0 Sink: 5 5 14 4 5 5		
Q.5. Briefly explains flow shop scheduling.	BLT-2	CO-4

ASSIGNMENT-V

Q.1. Explain the following terms:-	BLT-2	CO-5
i) P ii) NP		
Q 2. Explain NP Complete?	BLT-2	CO-5
Q.3 What is COOK's Theorem.	BLT-1	CO-5
Q.4 Explain vertex cover problem with suitable example.	BLT-2	CO-5

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-02: Compiler Design

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q1. What are the different phases of compiler? Explain the function of	BLT-1	CO-1
each phase in brief.		
Q2. Describe bootstrapping in details.	BLT-1	CO-1
Q3. What is a finite automata? Explain NFA and DFA with an example.	BLT-1	CO-1
Q4. Construct NFA to accept a(a/b)*b.	BLT-4	CO-1
Q5. What are the main functions performed by Lexical analyzer?	BLT-1	CO-1

ASSIGNMENT-II

Q1. What do you mean by LR parser? What is the model of an LR parser?	BLT-1	CO-2
Explain.		
Q2. What is context free grammar? Give distinction between regular and	BLT-1	CO-2
context free grammar and limitations of context free grammar.		
Q3. Explain top down and bottom up parsing techniques in detail.	BLT-2	CO-2
Q4. Explain the model of predictive parser.	BLT-2	CO-2
Q5. Explain operator precedence parsing and functions.	BLT-2	CO-2

Q1. Define Syntax Directed Definitions? Explain the various forms of	BLT-2	CO-3
syntax directed definitions.		
Q2. Define L- attributed definitions. Explain the specifications of a	BLT-3	CO-3
simple type checker.		
Q3. Write a program to translate an infix expression into postfix form.	BLT-1	CO-3
Q4. Explain the syntax Directed Translation Schemes in details.	BLT-3	CO-3
Q5. Write short notes on:	BLT-1	CO-3
i. Intermediate code generation		
ii. Types of three address statements		

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-02: Compiler Design

ASSIGNMENT-IV

Q1. What are the strategies of storage allocation in run time environment?	BLT-1	CO-4
Explain with suitable diagram		
Q2. What do you mean by symbol table management? Explain in detail.	BLT-1	CO-4
Q3. Explain the key issues in run time organisation.	BLT-2	CO-4
Q4. Explain activation records. Also explain the term dangling reference.	BLT-2	CO-4
Q5. What are the varies parameter passing method?	BLT-1	CO-4

ASSIGNMENT-V

Q1. Explain in brief the various issues of design a code generator.	BLT-2	CO-5
Q2. Write short notes on :	BLT-1	CO-5
i. Basics block and flow graph.		
ii. Activation records.		
Q3. Code optimization is an optimal phase of compilation process.	BLT-2	CO-5
Discuss in detail.		
Q4. What is peephole optimization? Explain its characteristics.	BLT-1	CO-5
Q5. Explain the steps required for code generation from DAG.	BLT-2	CO-5

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science & Engineering III Year V Semester

5CS4-04: Computer Graphics & Multimedia

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q1. Explain Basic Of Computer Graphics with their terminology.	BLT-1	CO-1
Q2. Explain Application of various areas of computer graphics in detail.	BLT-2	CO-1
Q.3 Explain CRT display devices with working operation.	BLT-2	CO-1
Q.4 Differentiate between following:	BLT-2	CO-1
(i) Raster And Random Scan System.		
(ii) Shadow Mask And Beam Penetration Method.		
Q.5.Explain Following Input Devices.	BLT-4	CO-1
i. Keyboard	DL1-4	CO-1
ii. Joystick		
iii. Light-Pen		
iv. Graphics -Tablet.		

ASSIGNMENT-II

Q1. Explain DDA algorithm and Write the steps to describe the DDA	BLT-2	CO-2
algorithm.		
Q2. Draw a line from (0, 0) to (6, 6) using DDA Algorithm and	BLT-3	CO-2
Bresenham's Algorithm.		
Q3. What is Polygon? Explain different types of polygon.	BLT-1	CO-2
Q4. Draw a circle having radious ,r = 10 using midpoint circle	BLT-3	CO-2
generation algorithm.		
Q5. Write the steps to describe the Bresenham's algorithm and mid-point	BLT-1	CO-2
circle algorithm		

Q1. Prove that the two scaling transformations commute i.e S1.S2= S2.S1	BLT-3	CO-3
Q2. Give the 2-D transformations matrix for	BLT-2	CO-3
(a) Translation		
(b) Rotation		
(c) Scaling		
Q3. What do you mean by composite transformations? How it is useful?	BLT-1	CO-3
Q4. What is homogeneous co-ordinates? Discuss the composite	BLT-1	CO-3
transformations matrices for two successive translations and scaling.		
Q5.Explain clipping and explain the Sutherland and Liang-Barskjy line	BLT-2	CO-3
clipping algorithm.		

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science & Engineering III Year V Semester

5CS4-04: Computer Graphics & Multimedia

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-IV

Q1 Determine eleven points on a Beizer curve with equidistant parameter	BLT-4	CO-4
values control points $(x0, y0) = (50, 180), (x1, y1) = (250, 100), (x2, y2)$		
= (600, 300) and $(x3, y3) = (500, 500)$, distributed over a screen of		
resolution 640 * 350		
Q2. Define Translation and Rotation in 3-D graphics.	BLT-1	CO-4
Q3. Define Projections and classification of Projection.	BLT-1	CO-4
Q4. Show that the Bezier curve always touches the starting point (for u=0)	BLT-3	CO-4
and the ending point(for u=1).		
Q5. Explain Viewing Pipeline and Co-ordinates in 3-D Graphics.	BLT-2	CO-4

ASSIGNMENT-V

Q1. Explain in brief RGB, CMY and HSV colour models.	BLT-2	CO-5
Q2. What is the use of compression technique in computer Graphics s?	BLT-1	CO-5
Explain JPEG.		
Q3. Explain the document architecture and formatting of files or	BLT-2	CO-5
documents in the multimedia systems.		
Q4. What is Animation? What are the challenges faced in its	BLT-1	CO-5
implementation? Write the steps in generation of animation.		
Q5. Explain in following in detail.	BLT-2	CO-5
i. Fractals		
ii. Ray-Tracing		
iii. C-curve		

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-03: Operating Systems

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

Q1. What is Operating system? Explain the architecture of an operating system.	BLT-1	CO-1
Q2. List out the various process state & brifly explain with a suitable state diagram.	BLT-2	CO-1
Q3. Explain the following: (i) Process and Program. (ii) Threads (iii) System Call	BLT-2	CO-1
Q4 Explain the various services of an operating system.	BLT-2	CO-1
Q5. Differentiate between (i) User thread/Kernel thread (ii) Processes/Threads	BLT-4	CO-1

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-03: Operating Systems

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

Q1. Wha	t is critical section	n problem? How a	re semaphores are	used for	BLT-1	CO-2
solving c	ritical section pro	blem.				
Q2. Wha	t is scheduling? I	Difference between	short term and loa	ng term	BLT-4	CO-2
schedule	rs.					
Q3.Descr	ribe basic criteria	to select a better C	CPU scheduling alg	gorithm	BLT-1	CO-2
Q4. Cons	sider the followin	g set of process wi	th the arrival time	and CPU	BLT-5	CO-2
burst tim	e in given in mili	osecond				
	PROCESS	ARRIVAL TIME	CPU BURST TIM	ΙE		
	P1	0	22			
	P2	3	15			
	P3	8	18			
	P4	10	25			
	ne average waiting preemptive SJF so	g time and turnarou cheduling.	und time with pree	mptive		
Q5 Cor	nsider the followi	ng set of process w	vith the arrival time	e and	BLT-5	CO-2
CPU bur	s <u>t time in given i</u>			7		
	Process	Arrival time	CPU burst			
			time			
	P1	0	25			
	P2	5	15			
	P3	8	12			
	P4	10	22			
	ne average waitinging algorithm.	g time and turnarou	und time with FCF	S		

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science & Engineering III Year V Semester 5CS4-03: Operating Systems

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-III

Q1. Explain about deadlock .what are the necessary conditions for	BLT-2	CO-3
deadlock to occur?		
Q2. Explain the fragmentation and difference between internal and	BLT-2	CO-3
external fragmentation?		
Q3. Explain the following:	BLT-2	CO-3
(i) Resource allocation graph.		
(ii) Deadlock characteristic.		
Q4. What are memory management and explain swapping.	BLT-1	CO-3
Q5. Explain the following .	BLT-2	CO-3
(i) Logical and physical address space		
(ii) Relocation and address translation		

ASSIGNMENT-IV

Q1. Explain the following	BLT-2	CO-4
(i) Virtual memory		
(ii) Segmentation		
Q2. Explain the various page replacement policies using atleast one	BLT-2	CO-4
example of one policy.		
Q3. Explain Concept of Thrashing and TLB(translation look aside buffer).	BLT-2	CO-4
Q4. Explain the following	BLT-2	CO-4
(i) Demand paging.		
(ii) Global versus local allocation.		
Q5. Consider least recent unit algorithm using a matrix when pages are	BLT-5	CO-4
referenced in the order		
0, 1, 2, 3, 2, 1, 0, 3, 2, 3.and calculate page fault.		

ASSIGNMENT-V

Q1. Explain various Disk Scheduling Algorithm in brief.	BLT-2	CO-5
Q2. Explain Concepts of file & Attribute of a file.	BLT-2	CO-5
Q3. Explain the directory structures and brifly explain about tree	BLT-2	CO-5
structured directory.		
Q4. Explain the following: Spooling	BLT-2	CO-5
i. File system mounting		
ii. Disk structure and disk operation		
Q5. Given the following queue 95, 180, 34, 119, 11, 123, 62, 64 with	BLT-5	CO-5
the Read-write head initially at the track 50 and the tail track being at		
199 to calculate by sstf and scan and look algorithm.		

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science and Engineering III Year V Semester 5CS5-11: Wireless Communication

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-I

Q.1 Explain the different path loss models free space and two ray models with link budget design (power calculation)	BLT-2	CO-1
Q2. Explain different parameters of mobile multipath channels (i)Time dispersion (ii) Coherence Bandwidth (iii) Doppler spread & coherence Time	BLT-2	CO-1
Q3. What is Fading? Explain large scale Fading.	BLT-1	CO-1
Q4. Explain small scale Fading briefly.	BLT-2	CO-1
Q5. Compute the Rms Delay Spread for the following power delay profile. a) Calculate the Rms Delay Spread for the given figure.	BLT-5	CO-1
b) If BPSK modulation is used, what is the maximum bit rate that can be sent through the channel without needing equalizer?		

ASSIGNMENT-II

Q1. Explain FDMA. Define the channel Capacity of FMA system.	BLT-2	CO-2
Q2. Define CDMA with capacity calculation.	BLT-1	CO-2
Q3. Discuss the comparison of FDMA, TDMA and CDMA.	BLT-1	CO-2
Q4. Explain the concept of frequency reuse	BLT-2	CO-2
Q5. Discuss the different interference and how they effect the system capacity?	BLT-1	CO-2

Q1. Explain the structure of a wireless communication link.	BLT-2	CO-3
Q2. Explain offset QPSK.	BLT-2	CO-3
Q3. What do you mean by minimum shift keying.	BLT-4	CO-3
Q4. Explain Gaussian Minimum shift keying.	BLT-2	CO-3
Q5. Explain OFDM principle.	BLT-1	CO-3

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science and Engineering III Year V Semester 5CS5-11: Wireless Communication

3C53-11. Wheless Communication

Note: Each assignment of Maximum Marks 10.All question carries equal marks.

ASSIGNMENT-IV

Q1. What do you mean by Adaptive equalization?	BLT-4	CO-4
Q2. Explain Linear and non-linear equalization.	BLT-1	CO-4
Q3. Define zero forcing and LMS Algorithms.	BLT-2	CO-4
Q4. Explain Diversity (i) Micro (ii) Macro	BLT-2	CO-4
Q5. Define Rave Receiver.	BLT-2	CO-4

ASSIGNMENT-V

Q1. Define the MIMO System.	BLT-1	CO-5
Q2.Explain spatial Multiplexing.	BLT-1	CO-5
Q3. What do you mean by beam farming.	BLT-2	CO-5
Q4. Explain transmitter and receiver diversity.	BLT-1	CO-5
Q1. Define the MIMO System.	BLT-1	CO-5

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science Engineering

III Year V Semester

5CS3-01: Information Theory and Coding

Note: Each Assignment of 10 Marks. All questions carry equal marks

Questions	BLT	CO
Q1. Define entropy and explain its significance in the context of information theory. Calculate the entropy for a source with the following probability distribution: $P(A)=0.25P(A)=0.25P(A)=0.25P(B)=0$	2	1
Q2. Define differential entropy and describe how it differs from the entropy of discrete random variables. Calculate the differential entropy for a uniform distribution on the interval [0,1][0, 1][0,1].	3	1
Q3. State the source coding theorem and explain its significance. Given a source with symbols $\{a,b,c\}\setminus\{a,b,c\}$ and probabilities $\{0.5,0.3,0.2\}\setminus\{0.5,0.3,0.2\}$ (0.5,0.3,0.2), calculate the average length of an optimal Huffman code.	2	1
Q4. Define the capacity of a discrete memoryless channel (DMC). Consider a DMC with input symbols $\{0,1\}\setminus\{0,\ 1\setminus\}\{0,1\}$ and output symbols $\{0,1\}\setminus\{0,\ 1\setminus\}\{0,1\}$ with transition probabilities $P(Y=0 X=0)=0.9P(Y=0 X=0)=0.9P(Y=0 X=0)=0.9P(Y=0 X=0)=0.9P(Y=1 X=0)=0.1P(Y=1 X=0)=0.1P(Y=1 X=0)=0.1,$ $P(Y=0 X=1)=0.1P(Y=0 X=1)=0.1$, and $P(Y=1 X=1)=0.9P(Y=1 X=1)=0.9P(Y=1 X=1)=0.9$. Calculate the capacity of this channel.	3	1
Q5. Define mutual information and conditional entropy. Given two random variables XXX and YYY with joint probabilities $P(X=0,Y=0)=0.2P(X=0,Y=0)=0.2P(X=0,Y=0)=0.2P(X=0,Y=1)=0.3P(X=0,Y=1)=0.3P(X=0,Y=1)=0.3, P(X=1,Y=0)=0.2P(X=1,Y=0)=0.2P(X=1,Y=0)=0.2, and P(X=1,Y=1)=0.3P(X=1,Y=1)=0.3P(X=1,Y=1)=0.3, calculate the mutual information I(X;Y)I(X;Y)I(X;Y) and the conditional entropy H(Y X)H(Y X).$	2	1

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free : 1800 102 1044

Department of Computer Science Engineering

III Year V Semester

5CS3-01: Information Theory and Coding

ASSIGNMENT-II

Questions	BLT	CO
Q1. Define a prefix code and explain why it is useful in data compression. Give an example of a prefix code for the set of symbols {A,B,C,D}\{A, B, C, D\}{A,B,C,D} with probabilities {0.4,0.3,0.2,0.1}\{0.4, 0.3, 0.2, 0.1\}{0.4,0.3,0.2,0.1}.	2	2
Q2. Describe the Huffman coding algorithm. Apply it to the symbols $\{A,B,C,D\}\setminus\{A,B,C,D\}\setminus\{0.5,0.25,0.15,0.10\}\setminus\{0.5,0.25,0.15,0.10\}$ and provide the resulting codewords.	3	2
Q3. Explain the Shannon-Fano coding procedure. Given the symbols $\{A,B,C,D\}\setminus\{A,B,C,D\}\setminus\{0.4,0.3,0.2,0.1\}\setminus\{0.4,0.3,0.2,0.1\}\setminus\{0.4,0.3,0.2,0.1\}$, construct the Shannon-Fano code.	2	2
Q4. Briefly describe the Lempel-Ziv coding algorithm. Explain how it differs from Huffman and Shannon-Fano coding.	3	2
Q5. State the channel coding theorem and explain its significance. Define the Shannon limit and discuss its implications for reliable communication over noisy channels.	2	2

Questions	BLT	CO
Q1. Explain the basic concept of error-correcting codes and their importance in digital communication systems. Provide an example of a simple error-correcting code	1	3
Q2. Describe the process of encoding a message using a linear block code. Given a generator matrix GGG and a message vector $m=[1,0,1]\setminus\{m\}$ = [1, 0, 1] $m=[1,0,1]$, encode the message.	3	3
Q3. Define the minimum distance of a linear block code and explain its significance. How does the minimum distance affect the error-detecting and error-correcting capabilities of the code?	3	3
Q4. Describe the process of converting a non-systematic generator matrix into its systematic form. Given a non-systematic generator matrix GGG, convert it to systematic form.	3	3
Q5. Explain the syndrome decoding method for linear block codes. Given a parity-check matrix HHH and a received vector $r=[1,0,1,1]$ \mathbf{r} = [1, 0, 1, 1]r=[1,0,1,1], determine if there is an error and identify its position.	2	3

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU Approved by AICTE, New Delhi)

 Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

Department of Computer Science Engineering

III Year V Semester

5CS3-01: Information Theory and Coding

ASSIGNMENT-IV

Questions	BLT	CO
Q1. Explain the concept of a Galois field (GF) and its significance in coding theory. What are the basic properties of GF(2)? Provide an example of addition and multiplication operations in GF(2).	4	4
Q2. Describe how polynomial operations are performed over GF(2). Given two polynomials $f(x)=x^3+x+1$ f(x) = x^3+x+1 f(x)= x^3+x+1 and $g(x)=x^2+1$ f(x)= x^2+1 f(x)= x^2+1 in GF(2), perform their addition and multiplication.	3	4
Q3. Define a generating polynomial for a cyclic code. Given a generator polynomial $g(x)=x3+x+1g(x)=x^3+x+1$ in GF(2), generate the cyclic code for the message vector $m=[1,0,1]$ \mathbf{m} = [1,0,1] $m=[1,0,1]$.	1	4
Q4. Explain the role of a parity check polynomial in cyclic codes. Given the generator polynomial $g(x)=x^3+x+1$ $g(x)=x^3+x+1$ $g(x)=x^3+x+1$, determine the parity check polynomial $g(x)=x^3+x+1$ $g(x)=x^3+x+1$ determine the parity check polynomial $g(x)=x^3+x+1$ $g(x)=x^3+$	3	4
Q5. Describe the encoding process for a cyclic code using a shift register. How does the decoder use the syndrome to correct errors? Given a received vector $r=[1,0,1,1,0,1]$ $f\{r\}=[1,0,1,1,0,1]$ and the parity check polynomial $h(x)=x4+x3+x2+1h(x)=x^4+x^3+x^2+1h(x)=x^4+x^3+x^2+1h(x)=x^4+x^3+x^2+1h(x)=x^4+x^3+x^2+1h(x)=x^4+x^3+x^2+1h(x)=x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4+$	2	4

ASSIGNMENT-V

Questions	BLT	CO
Q1. Define the rate of a convolutional encoder. Describe a convolutional encoder with a rate of $12\frac{1}{2}21$ and a constraint length of 3. Draw the encoder diagram and explain its operation.	3	5
Q2. Explain the difference between a code tree, a trellis, and a state diagram for a convolutional code. Create these representations for a simple rate $12\frac{1}{2}21$ convolutional encoder with generator polynomials $g1(x)=1+xg_1(x)=1+xg_1(x)=1+x+x2g_2(x)=1+x+x2g_2(x)=1+x+x2$.	3	5
Q3. Describe the maximum likelihood decoding principle for convolutional codes. How does the Viterbi algorithm implement this principle?	2	5
Q4. Provide a step-by-step explanation of the Viterbi algorithm. Apply the Viterbi algorithm to decode the received sequence $r=[00,11,01,10]$ \mathbf{r} = [00, 11, 01, 10]r=[00,11,01,10] for a rate $12\frac{1}{2}21$ convolutional code with generator polynomials $g1(x)=1+x+x2g_1(x)=1+x+x^2g_1(x)=1+x$	3	5
Q5. Define the free distance of a convolutional code and explain its significance. How do you determine the free distance for a given convolutional code?	3	5