

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

Approved by AICTE, New Delhi

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

www.aryacollegejpr.com Toll Free : 1800 102 1044

DEPARTMENT OF HUMANITIES & APPLIED SCIENCES

I Year II Semester

2FY2-01: ENGINEERING MATHEMATICSI - II

Note: Each Assignment of 10 marks All questions carry equal marks

ASSIGNMENT-I

Q.No.	Question	BLT	CO
1	State cayley Hamilton theorem & verify it for the matrix & find A $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	5	1
2	Check the consistency of system if possible, the find the solution. $x + y + z = 6$ $2x + y + 3z = 13$ $5x + 2y + z = 12$ $2x - 3y - 2z = -10$	3	1
3	Find eigen values & Eigen vectors $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	3	1
4	Find the rank by normal form. $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	5	1
5	Determine the rank of the matrix $ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 1 & 6 & 5 \end{bmatrix} $	5	1

*BLT: BLT shows the **Bloom's taxonomy** levels

(Affiliated to RTU
Approved by AICTE, New Delhi)

Main Campus, SP-40, RIICO Industrial Area, Delhi Road Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700 www.aryacollegejpr.comToll Free: 1800 102 1044

DEPARTMENT OF HUMANITIES & APPLIED SCIENCES

I Year II Semester

2FY2-01: ENGINEERING MATHEMATICSI - II

Note: Each Assignment of 10 marks All questions carry equal marks

ASSIGNMENT-II

Q.No.	Question	BLT	СО
1	$(1+y^2) + (x - e^{-tan^{-1}}y) \frac{dy}{dx} = 0$	5	2
2	$y(2xy + e^x)dx - e^x dy = 0$	1	2
3	$(1 + e^{x/y}) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$	3	2
4	$p^2 - 7p + 12 = 0$	3	2
5	$p = \tan(px - y)$	1	2

ASSIGNMENT-III

Q.No.	Question	BLT	CO
1	$(D^2 - 4D + 4)y = e^{2x} + \sin 2x$	1	3
2	$(D^2 + 2D + 1)y = e^x + x^2 - \sin x$	5	3
3	$D^2x + m^2y = 0 \& D^2y - m^2x = 0$, where $D = \frac{d}{dt}$	5	3
4	$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos\log(1+x)$	1	3
5	Solve in series $x \frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$	5	3

*BLT: BLT shows the **Bloom's taxonomy** levels

DEPARTMENT OF HUMANITIES & APPLIED SCIENCES

I Year II Semester

2FY2-01: ENGINEERING MATHEMATICSI-II

Note: Each Assignment of 10 marks All questions carry equal marks

ASSIGNMENT-IV

Q.No.	Question	BLT	CO
1	Solve $x(y^2 - z^2)p - y(z^2 + x^2)q = z(x^2 + y^2)$	3	4
2	Solve $(y^2 + z^2 - x^2)p - 2xyq = -2xz$	5	4
3	$z(xp - qy) = y^2 - x^2$	5	4
4	Write the charpit's equations for the first order partial differential equation.	3	4
5	Find the partial differential equation from $Z = ax + by + ab$.	5	4

ASSIGNMENT-V

Q.No.	Question	BLT	CO
1	Use method of separation of variables to solve the following $\frac{\partial^2 z}{\partial x^2} = \frac{1}{k} \frac{\partial z}{\partial t} \text{ where } z = z(x, t) \text{ with condditions } z(o, t) = z(1, t) = 0 \text{ for all } t$	1	5
2	Solve by method of separation of variables $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0 \qquad When \ z(0, y) = 0 \ \& \ \frac{\partial z}{\partial x}(0, y) = \overline{e}^{3y}$	3	5
3	Classify the following PDE as to type in second quadrant of $xy - plane$. $\sqrt{x^2 + y^2} U_{xx} + 2(x - y)U_{xy} + \sqrt{x^2 + y^2} U_{yy}$	5	5
4	Write the Heat, wave & Laplace equation.	5	5
5	Classify the Heat & wave equation of one dimensional & Laplace equation of two variables.	5	5

*BLT: BLT shows the **Bloom's taxonomy** levels